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It is very important in applications to approximate complex functions on
curves by polynomial splines. For closed contours, especially for the unit
circle, there are several references in the literature [2-5]. In practice, we are
interested in seeking kinds of splines to approximate a given function,
satisfying the following requirements: (1) they ought to be easily
constructed; (2) the error between them and the given function as well as
those between their derivatives must easily allow accurate estimates; (3)
these errors should tend to zero when the norm of the mesh tends to zero.
For rectifiable Jordan curves, the class of cubic splines will serve, although
the requirements (1) and (2) may cause problems.

Cubic splines with deficiency 2 in the real domain were considered in [1],
where it was shown that they satisfy the above requirements, though the
error-bounds were not worked out in detail.

In this work, we suggest using interpolating complex cubic splines with
deficiency 2 to approximate continuous functions given on a smooth curve
L. They have these advantages over those with deficiency 1: it is much easier
to construct them and much easier to estimate the error-bounds; there is no
superfluous restriction on the mesh when the properties of convergence are
studied; and the curve concerned mayor may not be closed. In the
meantime, the rates of convergence are of the same orders as those with
deficiency 1. In addition, even if the curve L considered is arc-wise smooth
or the given function is arc-wise continuous, the method used here remains in
effect if we consider them separately. Certainly, we gain these advantages by
sacrificing the continuity of the derivative of the second order at the knots.
However, the jumps at the knots may be made arbitrarily small.

We shall restrict ourselves to J(t) E C I at first and consider the case
J(t) E C later.

183
0021-9045/82/110183-14$02.00/0
Copyright <.t' 1982 by Academic Press. Inc.

All rights of reproduction in any form reserved.



184 CHIEN-KE LU

1. THE BASIC ESTIMATIONS

Let L = t"';il be an open smooth arc in the complex plane andf(t) E C l be
a given function defined on it. We shall denote the modulus of continuity of
PP)(t) (if it is continuous) with respect to the arc-length by wp(o).

The cubic polynomial Set) with boundary conditions

S(to) = f(to) = Yo'

S'(to) =f'(to) =y~,

is uniquely defined and given by

S(tl) =f(t]) =Yl'

S'(t]) =f'(tl) = Y;

Lly (LlY) (t - t )(t - t )2Set) = +- (t - t ) + ' _ _ 0 ]Yo LIt 0 Yo LIt Llt 2

(
' LlY) (t-to)2 (t-t l)

+ YI - LIt Llt2 '
(1.1 )

where Lly = y] - Yo' LIt = t] - to'
We introduce the arc-length parameter s = set) on L with s(to) = so,

s(t]) = Sl and denote LIs = s] - so(>O). It is well-known [6] that there exists
a constant C> I such that for every pair of t, t' E L

lu'l <C It- t'l·

We seek to estimate IpP)(t) - Slp) (t)1 ,p = 0, 1. Note that

If'(t) - ~~ I= I~t ( [f'(t) - f'(r)] dr 1,

where the path of integration is taken along L. Thus we have

Let t* = t(s*) be the mid-point of L. If t E Q*, then, by (1.2),

(1.2)

I f(t) - Yo - ~ (t - to) 1 = I ( If'(r) - ~ Jdr < ~ Cw((Lls) LIs.

Since
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we have

By symmetry, (1.3) is also valid for t E [*(] and hence for every tEL.
Since

'()_ Lly (, LlY) (t-t 1)(3t-2to-t])
S t -+ Y--- Llt 0 Llt Llt 2

(
ILlY) (t - to)(3t - to - 2t])

+ Y] - Llt Llt2 '

using (1.2) again, we obtain

in which we have used the inequality
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(1.3)

I(t - t)(3t - 2to- t 1)1 + I(t - to)(3t - to - 2t])1

~ (5) - S)(5 + 5) - 250) + (s - so)(2s] - So - 5) ~ ~LlS2.

If f(t) E c2, we may estimate If(P)(t) - S(P) (t)1 , p = 0, 1,2. Since

SI/(t) = 2 ( ,_ Lly ) 3t - to - 2t] + 2 ( ,_ LlY) 3t - 2to- t]
Yo Llt Llt2 Y] Llt Llt 2 '

f"(t)-SI/(t)= Ll~3 [LlY-Yb Llt -+f"(t)Llt2J(3t-to-2t l )

+ Ll~3 [LlY-Y;Llt+ ~fl/(t)Llt2J(3t-2to-t]). (1.4)

Noting that

ILly - Yb Llt - !fl/(t) Llt2 1= 1(' [fl/(r) - fl/(t) ](t l - r) dr I
.s I

~ w2(Lls) j (s 1 - s) ds = 1wiLls) Lls 2
So

and a similar estimation for ILly - Y; Llt + !fl/(t) Llt21, we have

1
Ifl/(t)-SI/(t)I~C2wiLls) Lll [131-10 -2111+131-210 -1]11

~ 3C3w2(Lls).

(1.5)
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Now we write
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where y~ =/"(to)' y;' =/"(/1)' For t E 0*, analogous to (1.5), we have

1 2 I 21121 + 1131~"2 c w2(Lls) ILltl (s - so) (3s) - So - 2s)

1
~ 4" CJwz(Lls) Lls 2

since

since

Hence we obtain

which is also valid for every tEL by symmetry.

(1.8)
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Now we write

f'(t) - S'(t) = (f'(t) - y~ - y;(t - to)]

+ (A _ I At _ ~y"At2) (t - to)(3t + to - 4t,)
Y Yo 2 0 At3

( 1) (t - t )(3t - t - 2t )+ A - ' At +_ "At2 0 0 ,y Y. 2 YI At3
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(1.9)

Suppose t E 0*; then

IJII ~+W2 (A;) Lis;

I 1
1 2 1

J2 + IJ31~ 2 C wiAt) IAtl (s - so) . 2(3s, - So - 2s)

~ C3wiAs) As,

since

since

Hence, we have for every tEL

Letf(t) E C3
• Since

S"'(t) = A~2 (y~ +Y; - 2 ~~ ),

(1.10)

(1.11 )
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we may write
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But

61ft
) (t - r)2 IIH11= lAW to [flf/(r)-f/l/(t)] 1 2 dr ::;;;C 3

w 3(As),

IH2 1::;;; C3w 3(As),

and

so that

(1.12)

We then expect better estimates for If(P)(t) - S(P)(t)l, p = 0, 1,2. Let us
rewrite (1.6) as

where y~' =I/I/(to), y;" =11f/(t]). Suppose t E Q*; then, analogous to (1.12),
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by (1.7),

by (1.8),

Therefore, for tEL, we have
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Now we rewrite (1.9) as

f' (t) - Sf (t)

[
Iff J= f'(t) - Y~ - y~(t - to) - y~ (t - to)2

(
" Iff) (t t )(3t + t 4t )+ Ll - f Llt _ Yo Llt2_ Yo Llt3 - 0 0 - 1

Y Yo 2 6 Llt3

(
" Iff) (t t )(3t t 2t )+ Ll _ 'Llt+~Llt2_~Llt3 - 0 - 0- I

Y y, 2 6 Llt3

(t - t )(3t - t - 2t )
-(Y"-y"-yIffLlt) 0 0 ,

I 0 0 2Llt

Again suppose t E t?*; then
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analogous to (1.12), by (1.10),

IL2!+ IL J!~ iC\olLls)(s - SO), 2(3s 1 - So - 2s) ~ !C3wJ(Lls) Lls 2
;

by (1.11),

jL 4 1~ ~CwJ(Lls)(s - so)(2s 1 - So - s) ~ iCwJ(Lls)Lls 2
;

ILs \~ lwJ(Lls)Lls 2
•

Hence we have

We then rewrite (1.4) as

2 ( y" ylll )+- Lly -y' LIt + ......!...Llt2 __I_Llt 3 (3t - 2t - t )iltJ I Z 6 0 I

-If''(t) - yg - yg'(t - to)] 3t - ~t- Zt l

3t - 2t - t+ [f"(t)-y;'-y;"(t-tJ] iltO 1

+y;" - y~' (3t - t - 2t )(3t - 2t - t )
3dt 0 I 0 I

Suppose t E Q*; then, as in (1.1Z),

IM,I + IM2 1~ CJw3(ils)ils;

IM31~Cw3 (LlZS) LIs;

IM4 1~ ~Cw3(Lls) ils;

1 1 3
IMsl ~T W3(ils) IAtl (2s, - So - S)(SI - 2so + s) ~ 4 Cw3(As) LIs.
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Hence we obtain

If"(t) - S"(t)1 ~ CW3 (.1;) .1s + (fe+C3
) w3(.1s) .1s

~ ( 1: C + C3
) w 3(.1s) .1s.

2. ESTIMATIONS IN GENERAL INTERPOLAnON
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Now let L: t = t(s) be a smooth curve, closed or not. A functionf(t) E C'
is given on L. We subdivide L by a mesh

(0 = So < Sl < ... < SN = L; tN= to in case L is closed).

The cubic spline with deficiency 2 interpolating f(t) and f'(t) at the knots
to,'''' tN is given by, as in (1.1),

.1y. (.1y.) (t - t.)(t - t. )2S(t)=S.(t)=y.+_J (t-f.) + y' __J J J+I
J J .1t. J ) .1t. .1t~J J J

(

I .1Y}) (t - tY (t - t)+ I) ..-.
+ Y1+I- .1t. .1t~ ,tEL}=t}t}+l'

J J

(2.1 )

where the notations are obvious. All the estimations in Section 1 are
applicable on each L} with C defined there. In order to get more accura~e

estimates, we may define

(t, t ' E L)

(0 < () ~ L when L is open, 0 < () ~ L/2 when L is closed). Obviously Cb 11
when () 1O. Therefore, if we denote () = max} .1s} (.1s) = 191+ II) then the
constant C which occurred in all estimations in section 1 may be replaced by

Cb •

Thus, owing to the results obtained in Section 1, we have the following
theorems.

THEOREM 1. Iff(t) E C I
, the following estimates are valid:

If(t) - S(t)1 ~ (!Cb +~cD w 1({)) (),

If'(t) - S'(t)1 ~ (Cb + ~CD w l ({))·
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THEOREM 2. Iff(t) E CZ
, the following estimates are valid:

(
1 1 1 3) Z

~ S+16Cb+4Cb wz(c5)c5,

If'(t) - S'(t)1 ~+W z (~ ) c5 + (~ Cb + C~) wz(c5) c5

~ (++ ~ Cb +C~) wz(c5) c5,

If"(t) - S"(t)1 ~ 3C~wz(c5).

THEOREM 3. If f(t) E C3
, the following estimates are valid:

THEOREM 4. If f(t) E cr (r = 1,2,3), then S(P)(t) tends uniformly to
f(P)(t) (p = 0,..., r) when c5 --+ o.

THEOREM 5. If f(r)(t) E H a (Holder condition), then

(0 ~p ~ r, r = 1,2,3).

Remark. If pr)(t) is arc-wise continuous, then these theorems remain
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true, provided the points of discontinuity are taken as a subset of the knots.
If the curve L is arc-wise smooth, we may treat it separately.

3. CASE OF CONTINUOUS FUNCTIONS

When jet) does not possess a continuous derivative and is simply
continuous on L, we may proceed as follows.

Take a mesh (2.1) of L. First of all, we construct a function F(t) linearly
interpolating jet) at the knots tj , i.e.,

Then, near each tj , we take two points ti, ti', respectively, on L j _ 1 and L; J

such that, for simplicity,

Now we interpolate F(t) on each Li = 0i' as in Section I and obtain F;*(t).
Define

F*(t) = F/(t),

= F(t),

when t E Li,

when tEULi.

Thus, F*(t) is also a cubic spline of deficiency 2. Let us estimate
Ij(t) -F*(t)l·

If t E 0i+ p then

Ij(t) - F*(t)1 = Ijet) - Yj - AYj (t - t) I
Alj

~wo (~) ++C8 W O(O)

~ (I ++c8 ) wo(o),

provided t E 0/. By symmetry, it is valid for 1 E ifii+1 also.

(3.1)

I For brevity, we consider L as a closed contour. However, the method used here remains
effective for an open arc.
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If tEL;, then, by (2.1),

F*(t)==F/(t) = Fj_l(t}) + (AF) (t-t})
L1t j

+ [r (t!) _ (AF) ] (t - tD(t - t;/)2
J-I J At. L1t!2

J J

+ [r(t(/) _ (L1F) ] (t - tJ)2 (t - ti')
J J L1t. At 2 ,

J J

where

At; = ti' - t; ,

while

F (t ') + L1Yj_1 ( I )
j-I j =Yj -,4-- tj - tj ,

LJtj _ 1

P (t!)=AYj-1
J-I J At. '

J-I

Suppose t E iftj; then

L1y.
F(t!/) =y. +_J (t" - t.)

J J J At. J J '
J

P(t!/) = AYj.
J J At.

J

If(t)-Fj_ 1(tJ)l= jf(t)-Yj- ~/-I (t;-tj)!
J-I

~ wo(Ac5) + ACh wo(c5)

~ (1 + ACh ) wo(c5), (3.2)

I(
L1F) (t-t()!= IL1Yj(t!l-t.)_L1Yj-1 (t!-n!.! t-t} \
At. J At. J J At. J J L1t

J J J-I J

~ J..C,s Cu ,swo(c5) ~ AC~wo(c5).

Since
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and a similar estimation for IFJ(tJ') - (LIF/Llt)jl while

I(t - tJ)(t - tj')2 + (t - t})2 (t - t}')1 ~ (s - sJ)(s}' - s) LIs} ~ ~LlsP,

where LIs} = s}' - s} ; hence we get
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Ij(t) - F*(t)/ ~ W o(At5) + (ACJ +AC~ + ~).c~) wo(o)

~ (1 + ).Cs +A.Ci + iA.C~) wo(o), (3.3)

which is valid for every tEL by symmetry.
On comparing (3.3) with (3.1), we finally obtain, for every tEL,

Thus, we have

THEOREM 6. IfJet) E C, then estimate (3.4) is valid; ifJet) E H n
, then

Ij(t) - F*(t)1 =o(on).

When A;;;:: f, it is easily verified (3.3) is valid for every tEL.
Note that, from (3.2) and (3.3), it is readily seen

(A = const).

This means the spline F*(t) is approximately interpolating jet) at tj if we
take A sufficiently small.

Remark. If the knots tj are uniformly distributed on L, or L is a line
segment or a circle (circular arc), all the estimations both in Section 2 and in
Section 3 may be simplified and improved.

4. THE ESTIMATION OF CJ

To complete our discussion, we should determine, or, at least, estimate the
value CJ for a given smooth curve L. When L is a line-segment, obviously
CJ = 1; when L is a circular are,

In general, we suppose L has a bounded curvature K, say,
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It is easy to show
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(0 < J < 11K). (4.2)

In fact, let t(s) = x(s) + iy(s) and t = t(s), t* = t(s*) be two arbitrary points
on L with ILlsl = Is* - sl::;; o. Then

ILltl 2 = It* - tl 2 = [x'(a l ? + y'(a2 )2j Lls 2 = (cos 2
(). + sin 2

()2) L1s 2
,

where s = (J I' a2 are two points on the arc ti * and ()l' ()2 are the inclinations
of the tangents of L at al' a2 , respectively. Therefore

l
L1t

l

2

1L1()1L1s > I - L1a ILlal> 1 - KILlal

from which (4.2) follows immediately.
Estimate (4.2) is useful, especially when J is small. However, it is very

rough. For example, if L is the unit circle, then, from (4.2), we have
C~ ::;; (1 - J) - 1/2 which is much greater than the exact value given by (4.1).

We also point out that, in many cases, C8 decreases to 1 very rapidly
when J --40; e.g., on the unit circle, C~ ~ 1.016 when J = n15, so that, for
sufficiently small J, we may take C8 ~ 1 for simplification during practical
calculations.
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